Pulse lineResearch With Heart Logo

A causal network analysis in an observational study identifies metabolomics pathways influencing plasma triglyceride levels.

TitleA causal network analysis in an observational study identifies metabolomics pathways influencing plasma triglyceride levels.
Publication TypeJournal Article
Year of Publication2016
AuthorsYazdani A, Yazdani A, Saniei A
Secondary AuthorsBoerwinkle E
JournalMetabolomics
Volume12
Pagination104
Date Published2016
ISSN1573-3882
Abstract

INTRODUCTION: Plasma triglyceride levels are a risk factor for coronary heart disease. Triglyceride metabolism is well characterized, but challenges remain to identify novel paths to lower levels. A metabolomics analysis may help identify such novel pathways and, therefore, provide hints about new drug targets.

OBJECTIVES: In an observational study, causal relationships in the metabolomics level of granularity are taken into account to distinguish metabolites and pathways having a direct effect on plasma triglyceride levels from those which are only associated with or have indirect effect on triglyceride.

METHOD: The analysis began by leveraging near-complete information from the genome level of granularity using the GDAG algorithm to identify a robust causal network over 122 metabolites in an upper level of granularity. Knowing the metabolomics causal relationships, we enter the triglyceride variable in the model to identify metabolites with direct effect on plasma triglyceride levels. We carried out the same analysis on triglycerides measured over five different visits spanning 24 years.

RESULT: Nine metabolites out of 122 metabolites under consideration influenced directly plasma triglyceride levels. Given these nine metabolites, the rest of metabolites in the study do not have a significant effect on triglyceride levels at significance level alpha = 0.001. Therefore, for the further analysis and interpretations about triglyceride levels, the focus should be on these nine metabolites out of 122 metabolites in the study. The metabolites with the strongest effects at the baseline visit were arachidonate and carnitine, followed by 9-hydroxy-octadecadenoic acid and palmitoylglycerophosphoinositol. The influence of arachidonate on triglyceride levels remained significant even at the fourth visit, which was 10 years after the baseline visit.

CONCLUSION: These results demonstrate the utility of integrating multi-omics data in a granularity framework to identify novel candidate pathways to lower risk factor levels.

DOI10.1007/s11306-016-1045-2
Alternate JournalMetabolomics
PubMed ID27330524
PubMed Central IDPMC4869741
Grant ListHHSN268201100012C / HL / NHLBI NIH HHS / United States
HHSN268201100009I / HL / NHLBI NIH HHS / United States
HHSN268201100005G / HL / NHLBI NIH HHS / United States
HHSN268201100007C / HL / NHLBI NIH HHS / United States
HHSN268201100011I / HL / NHLBI NIH HHS / United States
HHSN268201100011C / HL / NHLBI NIH HHS / United States
U01 HG004402 / HG / NHGRI NIH HHS / United States
HHSN268201100006C / HL / NHLBI NIH HHS / United States
HHSN268201100005I / HL / NHLBI NIH HHS / United States
HHSN268201100009C / HL / NHLBI NIH HHS / United States
HHSN268201100005C / HL / NHLBI NIH HHS / United States
HHSN268201100007I / HL / NHLBI NIH HHS / United States