Applied and Collaborative Research at CSCC

Beibo Zhao, MS
PhD Candidate
Department of Biostatistics
University of North Carolina at Chapel Hill

beibo@live.unc.edu

UNC Biostatistics / CSCC Faculty Candidate Seminar 2023
October 3, 2023
Overview

• Background: CSCC Experience
• Dissertation Research
 • PrecISE: Post hoc subgroup analysis in clinical trials
 • RIVUR: Real data application
• HCHS/SOL Work
 • Temporal patterns of sedentary behavior
 • Retention of Hispanics/Latinos
Overview

• **Background: CSCC Experience**

 • Dissertation Research
 • PrecISE: Post hoc subgroup analysis in clinical trials
 • RIVUR: Real data application

• **HCHS/SOL Work**

 • Temporal patterns of sedentary behavior
 • Retention of Hispanics/Latinos
Background: CSCC Experience

Precision Interventions for Severe and/or Exacerbation-Prone Asthma Network (PrecISE**)**
- Developed statistical methods related to subgroup analysis

Hispanic Community Health Study / Study of Latinos (HCHS/SOL**)**
- Student Programmer during MS
- Graduate Research Assistant during PhD
- Developed statistical methods and manuals/guidelines
- Collaborated with investigators on manuscripts

Randomized Intervention for Children with Vesicoureteral Reflux (RIVUR**)**
- Used data as application examples
Overview

• Background: CSCC Experience

• **Dissertation Research**
 • PrecISE: Post hoc subgroup analysis in clinical trials
 • RIVUR: Real data application

• HCHS/SOL Work
 • Temporal patterns of sedentary behavior
 • Retention of Hispanics/Latinos
PrecISE is a multi-arm multi-period crossover randomized clinical trial (RCT) in patients with severe asthma.

- Investigating five novel therapies for patients with severe asthma.
- Multiple endpoints:
 - Forced expiratory volume in one second % predicted
 - 6-item Juniper Asthma Control Questionnaire score
 - CompEx events
- Goals:
 - Assess the efficacy of each of the five interventions compared to placebo overall and in a biomarker-defined subgroup.
 - Identify subgroups of patients with a large estimated treatment effect based on any of the 3 endpoints (or their combination).

(Ivanova et al., 2020)
• Overall efficacy: favorable treatment effect in all patients at the end of RCT
• Discovery of patient subgroups with more pronounced responses than the overall population (perhaps even in absence of an overall effect), and identification of predictive baseline biomarkers
• Guideline-driven: Pre-specifies the subgroups
• Data-driven: Pre-specifies the subgroup selection strategy
 1) Define the targeted subgroups
 2) Estimate the subgroups from data
 3) Confirm the effects in estimated subgroups

(Lipkovich et al., 2023)
Dissertation Research: **PrecISE**

- Treatment indicator T (in a RCT, 0 = control, 1 = treatment)
- Candidate biomarkers X
- The treatment effect in a subgroup S
 \[\Delta(S) = E[Y^{(1)} - Y^{(0)} | X \in S] \]
- Definitions of the “best” subgroup
 - All individuals with treatment effect > 0 (Imai and Ratkovic, 2013)
 - All individuals with treatment effect $> \delta$ (Foster et al., 2011)
- Existing definitions consider only one outcome
- Motivated by PrecISE, which has three endpoints of different types
- Need a definition for the best subgroup to consider
 - Multiple outcomes; specifically, outcomes of different types
 - Both the treatment effect and the size (maximize efficacy)
• For a single outcome, define the best subgroup as the one that maximizes a utility over all possible subgroups (Lai et al., 2014)

\[S_{true} = \arg \max_S U(S) \]

• We extend this definition to the case of multiple \(J > 1 \) outcomes

\[U(S, \mathbf{w}) = w_1 U_1(S) + \ldots + w_J U_J(S), \]

where

\[\mathbf{w} = (w_1, \ldots, w_J) \]

such that

\[\sum_{j=1}^{J} w_j^2 = 1 \]

• Allows for a trade-off between the subgroup size and the treatment effect in the subgroup with respect to each outcome

• Optimal weights are typically not known in advance

• Estimate weights and the best subgroup from data simultaneously
• Consider continuous, binary, and censored time-to-event outcomes
• Adapt the penalized regression method to estimate best subgroups
• Simulation study
 • Sample size of 400 (200 in each arm)
 • Considered 4 independent uniform biomarkers and three correlated outcomes (continuous, binary, and censored-time-to-event)
 • Compared estimated weights vs. optimal weights
 • Similar estimation accuracy
 • Feasible to estimate weights and subgroup together
• Applicable to a multi-stage randomized clinical trial with prospective enrichment
RCT (N = 607) aimed to determine whether long-term antimicrobial prophylaxis is effective, in children with vesicoureteral reflux, to prevent:

- Primary outcome: Urinary tract infection (UTI) recurrence
- Secondary outcome: Renal scarring

Use of long-term antimicrobial prophylaxis treatment may lead to the development of antibiotic resistance and alterations of microbiome

- Number needed to treat (NNT) observed in the trial was large (10)
- Interest in identifying smaller and higher-risk subgroups of children that would benefit the most from long-term treatment

(Hoberman et al., 2014)
• Estimated best subgroup in the RIVUR trial from 1 or 2 outcomes with the proposed utility-based definition and estimated weights

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Size</th>
<th>UTI recurrence</th>
<th>Renal scarring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Risk difference (NNT)</td>
<td>p-value</td>
</tr>
<tr>
<td>UTI & Renal scarring</td>
<td>85</td>
<td>0.24 (5)</td>
<td>0.02</td>
</tr>
<tr>
<td>UTI</td>
<td>427</td>
<td>0.10 (10)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

• Proposed definition allowed incorporating the information from renal scarring into that of UTI recurrence to identify a subgroup with significantly larger clinical benefit (NNT = 5) from long-term antimicrobial prophylaxis than just using UTI recurrence (NNT = 10)
• PrecISE motivated work (submitted)
differential treatment effect with multiple outcomes. Submitted to
Statistics in Medicine.

• More RIVUR application (in review)
vesicoureteral reflux: which subgroups of children benefit the most?.
Research square, rs.3.rs-3286108. https://doi.org/10.21203/rs.3.rs-
3286108/v1

• Subgroup confirmation work (published)
 Zhao, B., Ivanova, A., Fine, J. (2023). Inference on subgroups identified
based on a heterogeneous treatment effect in a post hoc analysis of a
 https://doi.org/10.1177/17407745231173055
Overview

• Background: CSCC Experience

• Dissertation Research
 • PrecISE: Post hoc subgroup analysis in clinical trials
 • RIVUR: Real data application

• HCHS/SOL Work
 • Temporal patterns of sedentary behavior
 • Retention of Hispanics/Latinos

“**Multilevel Modelling** for Analyzing Correlated Data with Complex Sampling Design in HCHS/SOL”. https://sites.cscce.unc.edu/hchs/node/12075

HCHS/SOL **Analysis Methods – Visit 2.** https://sites.cscce.unc.edu/hchs/node/6113
HCHS/SOL

- **HCHS/SOL** is a multi-center, community-based cohort study (N = 16,415 US Hispanic/Latino adults, 18-74 yrs) at four urban field centers (Baseline, 2008-2011)

- Selected through a stratified multi-stage area probability sample design (Lavange et al., 2010)
• Time spent in sedentary behavior is associated with incident cardiovascular disease (CVD)

• Conventional interventions to reduce sedentary behavior with a full-day approach have achieved mixed results

• An alternative strategy may be to target specific periods during the day and/or the week

• The goal is to examine day-of-the-week and time-of-the-day temporal patterns of sedentary behavior among U.S. Hispanic/Latino adults, overall and by sociodemographic characteristics
• Physical Activity
 • 1-week accelerometer (counts/minute)
 • Non-wear time determined by Choi algorithm (Choi et al., 2011)
 • Adherence: ≥ 3 days with ≥ 10 hrs of wear time per day
• Participants were instructed to remove the accelerometer device during water activities and sleep periods, but they might not do so
• Accelerometer cannot differentiate sleep from sedentary behavior
• **Sedentary bout**
 • An interval of one or more consecutive minutes in which the accelerometer registered <100 counts/min (sedentary time)

• **Sedentary break**
 • An interval of one or more consecutive minutes in which the accelerometer registered ≥ 100 counts/min (active time), between two sedentary bouts

• Non-wear time were not included in any bout or break

• **Measures of sedentary behavior:**
 • Total volume of sedentary time (mins/day)
 • Total volume of time in sedentary bouts ≥ 60 mins (mins/day)
 • Total number of sedentary breaks (/day)
• **Day-of-the-week**
 • Analyzed by days of week
 • Summarized into weekday/weekend

• **Time-of-the-day**
 • Analyzed by 3-hr periods
 • Summarized into 6-hr periods

• Only considered data from adherent days (≥ 10 hrs of wear)

• Excluded excessive wear time (> 23hrs) and device malfunction (Moore et al., 2023)

• Final analytic sample size $N = 12,241$
• Multivariate-adjusted multi-level mixed-effects linear regression
 • Adjusted for sex, age group, field center, Hispanic/Latino background, employment, shift schedule, BMI (WHO), born in US, acculturation, education, income, season, moderate to vigorous physical activity, Short-Form 12 Health Survey mental and physical score, and wear time
• Survey designs
 • Multi-level stratified and weighted pseudolikelihood
 • PSU-level (block groups) stratification
 • Actical multi-level inverse probability weighting (IPW) weights, accounting for complex survey design and missing Actical data
• Random intercepts (households, participants) for clustering effect
• Interaction between wear time and cross-classification of field center and Hispanic/Latino background
• Tested the significant interaction between time periods and each of the nine subgroups in separate models respectively

• Stratified analysis
 • By age, employment-shift, acculturation, field center, season

• Sensitivity analyses
 • Participants with at least one weekend day (N = 10,837)
 • Removing the 0:00 to 6:00 time period (N = 12,241)
 • Simultaneously account for weekend non-wear and wear during sleep, including only participants with at least one weekend and removing data from the 0:00 – 6:00 time period (N = 10,837)
• Sedentary behavior metrics by day of the week
• Sedentary behavior metrics by time of the day
• Discussion
 • Statistically significant variations in temporal patterns across day-of-the-week and time-of-the-day time periods for all three metrics
 • More sedentary on weekends than on weekdays, and most sedentary on Sundays
 • U-curve pattern, most sedentary late at night, less sedentary throughout the day, reached peak physical activity around noon, gradually more sedentary into the evening
 • Patterns were largely robust across seasonality and most sociodemographic characteristics

• Conclusion
 • Early mornings, evenings, weekends - the more sedentary periods - present windows of opportunity to reduce sedentary time
HCHS/SOL

- Examined the retention of Hispanics/Latinos in HCHS/SOL
- Across 5 years (2009 – 2016), HCHS/SOL maintained high contact, response, and participation rates
- The most difficult Hispanic/Latino populations to retain included young, single, US-born males with less than a high school education
- HCHS/SOL participants primarily sought to help their community and learn more about their health
• HCHS/SOL Analysis Methods - Visit 2
 • Provided data analytic guidelines to all HCHS/SOL investigators
 • Created multilevel sampling weights
 • Updated complex survey procedures and model-based procedures
 • Added multilevel modelling section
 • Contributed heavily to survival analysis section
 • Provided examples codes in 4 programming languages (SAS/SUDAAN, R, Stata, Mplus)

• Ongoing
 • Interval-censored survival analysis
 • Inverse sampling
 • Visit 3 variable definitions
 • …
Acknowledgement

• SPECIAL thanks to PrecISE Study PI, and my Dissertation Adviser: Anastasia Ivanova

• All co-authors
• HCHS/SOL Supervisor: Daniela Sotres-Alvarez
• HCHS/SOL Study PI: Jianwen Cai
• Staff and participants of HCHS/SOL

• Funding from National Heart, Lung, and Blood Institute (NHLBI)

Thank You
• Sensitivity Analyses
Figure 3. Estimated marginal means per day (95% CI) in sedentary behavior metrics by day of the week, stratified by subgroups, HCHS/SOL 2008-2011 (N = 12,241)

- Day-shift workers exhibited a sizeable uptick in sedentary time from Friday to Saturday while others did not show much change.
- Chicago site exhibited an opposite trend for all sedentary metrics during weekdays comparing to other field centers.
Figure 4. Estimated marginal means per hour (95% CI) in sedentary behavior metrics by time of the day, stratified by subgroups, HCHS/SOL 2008-2011 (N = 12,241)

- Day-shift workers exhibited a much more pronounced change in sedentary behavior than others when transitioning between typical working hours (6:00 - 17:59) and off-hours (18:00 – 5:59), with hardly any fluctuation during working hours.